Learning Syntactic Rules and Tags with Genetic Algorithms for Information Retrieval and Filtering: An Empirical Basis for Grammatical Rules
نویسنده
چکیده
The grammars of natural languages may be learned by using genetic algorithms that reproduce and mutate grammatical rules and part-of-speech tags, improving the quality of later generations of grammatical components. Syntactic rules are randomly generated and then evolve; those rules resulting in improved parsing and occasionally improved retrieval and filtering performance are allowed to further propagate. The LUST system learns the characteristics of the language or sublanguage used in document abstracts by learning from the document rankings obtained from the parsed abstracts. Unlike the application of traditional linguistic rules to retrieval and filtering applications, LUST develops grammatical structures and tags without the prior imposition of some common grammatical assumptions (e.g., part-of-speech assumptions), producing grammars that are empirically based and are optimized for this particular application. The author wishes to thank Stephanie Haas for discussions during the course of this research.
منابع مشابه
مدل ترجمه عبارت-مرزی با استفاده از برچسبهای کمعمق نحوی
Phrase-boundary model for statistical machine translation labels the rules with classes of boundary words on the target side phrases of training corpus. In this paper, we extend the phrase-boundary model using shallow syntactic labels including POS tags and chunk labels. With the priority of chunk labels, the proposed model names non-terminals with shallow syntactic labels on the boundaries of ...
متن کاملThe Introduction of a Heuristic Mutation Operator to Strengthen the Discovery Component of XCS
The extended classifier systems (XCS) by producing a set of rules is (classifier) trying to solve learning problems as online. XCS is a rather complex combination of genetic algorithm and reinforcement learning that using genetic algorithm tries to discover the encouraging rules and value them by reinforcement learning. Among the important factors in the performance of XCS is the possibility to...
متن کاملThe Introduction of a Heuristic Mutation Operator to Strengthen the Discovery Component of XCS
The extended classifier systems (XCS) by producing a set of rules is (classifier) trying to solve learning problems as online. XCS is a rather complex combination of genetic algorithm and reinforcement learning that using genetic algorithm tries to discover the encouraging rules and value them by reinforcement learning. Among the important factors in the performance of XCS is the possibility to...
متن کاملChaotic Genetic Algorithm based on Explicit Memory with a new Strategy for Updating and Retrieval of Memory in Dynamic Environments
Many of the problems considered in optimization and learning assume that solutions exist in a dynamic. Hence, algorithms are required that dynamically adapt with the problem’s conditions and search new conditions. Mostly, utilization of information from the past allows to quickly adapting changes after. This is the idea underlining the use of memory in this field, what involves key design issue...
متن کاملReducing Retrieval Time in Automated Storage and Retrieval System with a Gravitational Conveyor Based on Multi-Agent Systems
The main objective of this study is to reduce the retrieval time of a list of products by choosing the best combination of storage and retrieval rules at any time. This is why we start by implementing some storage rules in an Automated Storage/Retrieval System (Automated Storage and Retrieval System: AS/RS) fitted with a gravity conveyor while some of these rules are dedicated to storage and ot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Process. Manage.
دوره 32 شماره
صفحات -
تاریخ انتشار 1996